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More often than not in calculation of long-range contributions to the NMR shielding either 
a sufficiently exact equation is not available or more rigorous and elaborate calculations lead 
to results largely of an estimative nature because of inaccuracies in the available data. In the present 
paper a simple approximate formula is derived which with literature data yields as good estimates 
of the shielding effect of a freely rotating magnetically anisotropic group as a more complicated 
"exact" formula. 

The magnetic shielding of a proton in a complex molecule is usually and conveniently 
regarded as being composed of seve,al contributions. One of the long-range or neighbour atom 
contributions is that from the magnetic. moment induced by the external magnetic field in a group 
G of electrons within the molecule but remote from a proton A. If the group magnetic molar 
susceptibility tensor is:l G then its shielding contribution O'~ in the liquid state is l

: 

(1) 

where the average < > av is taken over all molecular orientations. The radius vector R points from 
the proton A to some point OG within the group G (usually taken to be the electrical center 
of gravity of this group). Averaging Eq. (1) for an axially (or conically) symmetric group gives 
the much simpler expression 1 : 

ilXG 
O'~ = -3- [1 - 3 cos2 y] , 

3R No 
(2) 

where ilXG is the anisotropy in the susceptibility (ilx = Xli - X.l) and y is the angle between R 

and the symmetry axis of the group G. 

In applying McConnell's Eq. (2) to the assesment of the shielding effect of a freely rotating 
group or bond it is necessary to evaluate the average of O'~ over the internal motion in the mole
cule l

. Since analytical calculation of the average is difficult authors usually prefered numerical 
averaging (e.g. 2 ,3) of Eq. (2). ApSimon and coworkers4

, however, were able to derive rigorously 
from Eq. (2) a complicated "exact" formula for the average, containing besides analytical ex
pressions only elliptical integrals of the first (K) and second (E) kind, namely 

(3) 

(The symbols occuring in (3) are defined in ref. 4). Equation (3) is exactly equivalent to Eq. (2) 
and can be used to find O'~ or ilXG when a) the approximations implied in Eq. (1) and V) are 
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justified and b) when the geometric factors (a, b, R eTc.) are known together with I:J.XG or 11~ with 
sufficient precision. 

These requirements are, however, only rarely met. For example the literature values for I:J.x 
for such important bonds as C- H and C-C rangeS from 0 to 3 and from 1·5 to 10 ( x 10- 6 

cm3 mol- l
). In addition to this uncertainty the magnitudes of the geometric factors 0, b, R, etc. 

are somewhat arbitrary in that they depend on a rather arbitrary choice for 0G (the site of the 
dipole in the group G). If we bear in mind that quite often it is the order of magnitude of 11~ or 
I:J.x G that is required (in order to determine whether long-range effects are important in a parti
cular case) the need for a simpler approximate formula is evident. 

In order to obtain a simpler formula the following model was adopted. The model is well 
within the assumptions made by McConnell l in deriving Eq. (1). The approximations, usually 
referred to as the point-dipole approximation, permit the group G to be approximated by a point 
dipole if it is small relative to R. If this group dipole rotates ar an angle .9 about an axis z and if the 
rotation is fast enough for proton A (sufficiently remote from the group G) to see only the average 
effect of the group then it can be approximated by an effective stationary group G' which is 
conically symmetric about the axis z. The shielding effect of such a group G' will be described 
by Eq. (2) in which I:J.x G is replaced by I:J.x G

' and the angle), is now the angle between z-axis and 
the vector R. 

The remaining problem to be solved is the relation between the two anisotropies. The rela
tion can be obtained by a tensor transformation and averaging over the rotations of the group G 
First, we transform the tensor ;G according to Eq . (4) from its principal axis coordinate system 
into the Cartesian coordinate system x, y, z where z coincides with the axis of rotation of G 

(4) 

[
1 0 0 ] 

where M = 0 cos.9 sin.9. 
o - sin.9 cos.9 

Then we let the tensor rotate with a constant angular velocity w (free .rotation) about the axis z, 
we obtain 

(5) 

[

COS wt sin wt 
where T = - sin wt cos wt 

o 0 

The magnetic susceptibility i G
' of the new effective group G' is obtained as an average over all 

the angles 

X = - X d(wt). 
-G ' I f~n "" G 

21t 0 

The calculated tensor i G
' is diagonal axially symmetric and, 

xY.' = XG'(I,1) = XG'(2,2) = 'Hl[(1 + cos2 .9) + xW sin2 .9] 

xW' = XG(3,3) = xff cos2 .9 + xY sin2 .9 
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so that the anisotropy is 
(7) 

which gives the formula for the shielding effect 

G /';.IT
G 

2 . 2 
IT A = 3R3 N~ (1 - 3 cos y) (1 - -} sm 8). (8) 

The assumptions and approximations involved are apparent from the description of the model 
used. It should be emphasized that they are essentially those of the point-dipole approximation, 
so within the applicability of this approximation the formula (8) is as exact as the formula (2). 
Numerical calculations for CH3 group showed that Eq. (8) gives results of the same sign and 
order of magnitude Eq. (3) for a wide range of values of R (3-10 A) and y (0 - 90°). The difference 
between the two expressions varied according to the values of Rand y but in the average it amount
ed to some 25% of the calculated values. 

Clearifying discussions with Drs V. Spirko and I. Bohacek, Institute of Physical Chemistry, Cze
choslovak Academy of Sciences, Prague, are gratefully acknowledged. 

REFERENCES 

1. McConnell H . M.: J . Chern. Phys. 27,226 (1957). 
2. Hobgood R. T., Goldstein J . H.: Spectrochim. Acta 19, 321 (1963). 
3. Egorockin A. N., Burov A. I., Mironov V. F., Gar T. K., Vjazankin N. S.: Dokl. Akad. 

Nauk SSSR 180, 861 (1968). 
4. ApSimon J. W., Craig W. G., Demacro P. V., Mathieson D. W., Sanders L., Whalley W. B.: 

Tetrahedron 23, 2339 (1967). 
5. Bothner-By A. A., Pople J . A.: Ann. Rev. Phys. Chern. 16, 43 (1965). 

Translated by the author (1. S.). 

STABILITY CONSTANTS OF CHLORIDE 
AND BROMIDE COMPLEXES OF BIVALENT COBALT 
AND NICKEL IN EUTECTIC MELT OF LITlllUM, 
SODIUM AND POTASSIUM NITRATES 

P.PACAK and I.SLAMA 

Institllte of Inorganic Chemistry, 
Czechoslovak Academy of Sciences, Prague 6 

Received July 6th, 1970 

Study of composition and stability of complexes in molten salts is of importance for 
estimating the properties of molten salts, which represent the widest scope of inorganic 
solvents. Moreover, it is important also from the practical point of view, e.g. for the applica-
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